52 research outputs found

    Salmonella enterica Serovar Typhimurium Lacking hfq Gene Confers Protective Immunity against Murine Typhoid

    Get PDF
    Salmonella enterica is an important enteric pathogen and its various serovars are involved in causing both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella leading to increased morbidity and mortality has further complicated its management. Live attenuated vaccines have been proven superior over killed or subunit vaccines due to their ability to induce protective immunity. Of the various strategies used for the generation of live attenuated vaccine strains, focus has gradually shifted towards manipulation of virulence regulator genes. Hfq is a RNA chaperon which mediates the binding of small RNAs to the mRNA and assists in post-transcriptional gene regulation in bacteria. In this study, we evaluated the efficacy of the Salmonella Typhimurium Δhfq strain as a candidate for live oral vaccine in murine model of typhoid fever. Salmonella hfq deletion mutant is highly attenuated in cell culture and animal model implying a significant role of Hfq in bacterial virulence. Oral immunization with the Salmonella hfq deletion mutant efficiently protects mice against subsequent oral challenge with virulent strain of Salmonella Typhimurium. Moreover, protection was induced upon both multiple as well as single dose of immunizations. The vaccine strain appears to be safe for use in pregnant mice and the protection is mediated by the increase in the number of CD4+ T lymphocytes upon vaccination. The levels of serum IgG and secretory-IgA in intestinal washes specific to lipopolysaccharide and outer membrane protein were significantly increased upon vaccination. Furthermore, hfq deletion mutant showed enhanced antigen presentation by dendritic cells compared to the wild type strain. Taken together, the studies in murine immunization model suggest that the Salmonella hfq deletion mutant can be a novel live oral vaccine candidate

    Commercial products for osteochondral tissue repair and regeneration

    Get PDF
    The osteochondral tissue represents a complex structure composed of four interconnected structures, namely hyaline cartilage, a thin layer of calcified cartilage, subchondral bone, and cancellous bone. Due to the several difficulties associated with its repair and regeneration, researchers have developed several studies aiming to restore the native tissue, some of which had led to tissue-engineered commercial products. In this sense, this chapter discusses the good manufacturing practices, regulatory medical conditions and challenges on clinical translations that should be fulfilled regarding the safety and efficacy of the new commercialized products. Furthermore, we review the current osteochondral products that are currently being marketed and applied in the clinical setting, emphasizing the advantages and difficulties of each one.FROnTHERA (NORTE-01-0145- FEDER-000023), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The authors would also like to acknowledge H2020-MSCA-RISE program, as this work is part of developments carried out in BAMOS project, funded by the European Union’s Horizon 2020 research and innovation program under grant agreement N° 734156. The financial support from the Portuguese Foundation for Science and Technology under the program Investigador FCT 2012 and 2015 (IF/00423/2012 and IF/01285/2015)info:eu-repo/semantics/publishedVersio

    Systems responses to progressive water stress in durum wheat

    Get PDF
    Durum wheat is susceptible to terminal drought which can greatly decrease grain yield. Breeding to improve crop yield is hampered by inadequate knowledge of how the physiological and metabolic changes caused by drought are related to gene expression. To gain better insight into mechanisms defining resistance to water stress we studied the physiological and transcriptome responses of three durum breeding lines varying for yield stability under drought. Parents of a mapping population (Lahn x Cham1) and a recombinant inbred line (RIL2219) showed lowered flag leaf relative water content, water potential and photosynthesis when subjected to controlled water stress time transient experiments over a six-day period. RIL2219 lost less water and showed constitutively higher stomatal conductance, photosynthesis, transpiration, abscisic acid content and enhanced osmotic adjustment at equivalent leaf water compared to parents, thus defining a physiological strategy for high yield stability under water stress. Parallel analysis of the flag leaf transcriptome under stress uncovered global trends of early changes in regulatory pathways, reconfiguration of primary and secondary metabolism and lowered expression of transcripts in photosynthesis in all three lines. Differences in the number of genes, magnitude and profile of their expression response were also established amongst the lines with a high number belonging to regulatory pathways. In addition, we documented a large number of genes showing constitutive differences in leaf transcript expression between the genotypes at control non-stress conditions. Principal Coordinates Analysis uncovered a high level of structure in the transcriptome response to water stress in each wheat line suggesting genome-wide co-ordination of transcription. Utilising a systems-based approach of analysing the integrated wheat's response to water stress, in terms of biological robustness theory, the findings suggest that each durum line transcriptome responded to water stress in a genome-specific manner which contributes to an overall different strategy of resistance to water stress

    Prioritization of skeletal muscle growth for emergence from hibernation

    No full text
    Mammalian hibernators provide an extreme example of naturally occurring challenges to muscle homeostasis. The annual hibernation cycle is characterized by shifts between summer euthermy with tissue anabolism and accumulation of body fat reserves, and winter heterothermy with fasting and tissue catabolism. The circannual patterns of skeletal muscle remodelling must accommodate extended inactivity during winter torpor, the motor requirements of transient winter active periods, and sustained activity following spring emergence. Muscle volume in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) calculated from MRI upper hindlimb images (n=6 squirrels, n=10 serial scans) declined from hibernation onset, reaching a nadir in early February. Paradoxically, mean muscle volume rose sharply after February despite ongoing hibernation, and continued total body mass decline until April. Correspondingly, the ratio of muscle volume to body mass was steady during winter atrophy (October–February) but increased (+70%) from February to May, which significantly outpaced changes in liver or kidney examined by the same method. Generally stable myocyte cross-sectional area and density indicated that muscle remodelling is well regulated in this hibernator, despite vastly altered seasonal fuel and activity levels. Body composition analysis by echo MRI showed lean tissue preservation throughout hibernation amid declining fat mass by the end of winter. Muscle protein synthesis was 66% depressed in early but not late winter compared with a summer fasted baseline, while no significant changes were observed in the heart, liver or intestine, providing evidence that could support a transition in skeletal muscle regulation between early and late winter, prior to spring emergence and re-feeding
    corecore